Human bone marrow and peripheral blood T lymphocyte depletion: efficacy and effects of both T cells and monocytes on growth of hematopoietic progenitors.
نویسندگان
چکیده
The efficacy of four separate methods of human bone marrow T lymphocyte depletion was assessed, and the effect of T cells and monocytes on in vitro growth of marrow (CFU-GEMM, BFU-E, and CFU-GM) and peripheral blood (BFU-E) hematopoietic progenitors was determined. Extent of T cell depletion was assessed by multiparameter fluorescent cell sorter (FACS) analysis and by functional studies. Cells staining positively by FACS analysis for one or more of three separate fluorescent pan-T cell monoclonal antibodies (MCAbs) comprised 8.4% to 9.5% of control marrow mononuclear cells (MNCs). T cells constituted 3.2% to 5.1% of marrow following single, sequential, or combination treatment with two different pan-T cell MCAbs (Leu 1 and TM1) plus complement, 1.5% to 2.2% of marrow following solid-phase immunoabsorption ("panning"), 0.2% of marrow after sheep cell rosetting, and only 0.05% of marrow after FACS selective cell sorting and gated separation. T cells made up 59% to 73% of control peripheral blood MNCs and 0.8% to 2.8% of peripheral MNCs following sheep cell rosetting plus treatment with Leu 1 MCAb and complement. Mitogen (PHA, Con A) and allogeneic MLC-induced blastogenic responses (stimulation indices, experimental/control or E/C) revealed a concordant decrement in marrow T cell function after MCAb plus complement (E/C of 3.9 to 9.0), after panning (E/C of 1.6 to 3.5) and after sheep cell rosetting (E/C of 0.7 to 1.3), compared with control marrow (E/C of 5.3 to 15.7). After T cell depletion, marrow BFU-E growth was 95% to 120% of control, CFU-GM growth was 90% to 108% of control, and CFU-GEMM growth was 89% to 111% of control. Marrow T cell and/or monocyte depletion did not alter erythropoietin-dependent BFU-E growth in the absence of Mo-conditioned medium (81% to 95% of control), and the addition of as many as 50 to 100 X 10(3) purified marrow monocytes or T cells to 10(5) autologous nonadherent T cell-depleted marrow target cells had a negligible (P greater than .1) effect on marrow BFU-E growth in vitro. Peripheral blood (PB) BFU-E/10(5) T-depleted target cells were 106% +/- 19% of expected; PB BFU-E growth was significantly diminished after monocyte depletion alone (7% +/- 6% of expected) or after monocyte plus T cell depletion (8% +/- 4% of expected).(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملLymphokine(s) from isolated T lymphocyte subpopulations support multilineage hematopoietic colony and megakaryocytic colony formation.
Conditioned medium derived from peripheral mononuclear low-density cells stimulated with phytohemagglutinin (PHA) supports the growth of noncommitted hematopoietic progenitors from marrow and peripheral blood cells. These immature progenitors (CFU-GEMM) can be identified in culture as multilineage hematopoietic colonies containing erythroblasts, eosinophilic, basophilic and neutrophilic granulo...
متن کاملAssay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 65 3 شماره
صفحات -
تاریخ انتشار 1985